
Smart contract security
audit report

Audit Number: 202109131155

Project Contract Name: SWEET

Project Deployment Platform: Heco Smart Chain

Project Contract Address:

Audit Start Date: 2021.09.13

Audit Completion Date: 2021.09.13

Audit Result: Pass

Audit Team: Beosin (Chengdu LianAn) Technology Co. Ltd.

Contract Name On-chain Address

SWEET 0x1fa9F1CbF8c9a4fb3431a5809f31723038ed291B

Audit Results Explained

Beosin (Chengdu LianAn) Technology has used several methods including Formal Verification, Static

Analysis, Typical Case Testing and Manual Review to audit three major aspects of SWEET smart contract,

including Coding Standards, Security, and Business Logic. After auditing, the SWEET smart contract was

not found to have any risk items. The overall result of the SWEET smart contract is Pass. The following

is the detailed audit information for this project.

Other audit items explained

1. Basic Token Information

Token name HONEY TOKEN

Token symbol SWEET

decimals 18

totalSupply Initial supply is 10 billion, mintable

with out cap, burnable.

Token type HRC-20

Table 1 – SWEET Token Information

2. HRC-20 Token Standard Functions

The token contract implements a token which conforms to the HRC-20 Standards. It should be noted that

the user can directly call the approve function to set the approval value for the specified address, but in order

to avoid multiple authorizations, it is recommended to use the increaseAllowance and decreaseAllowance

functions to modify the authorization value.

3. Mint and burn Description

The owner of a contract can mint itself with the mint function, and there is no mint limit. Anyone can

destroy their own tokens via the burn function.

Figure 1 source code of related functions

Appendix 1 Description of Vulnerability Level

Vulnerability Level Description Example

Critical Vulnerabilities that lead to the complete

destruction of the project and cannot be

recovered. It is strongly recommended to fix.

Malicious tampering of core

contract privileges and theft of

contract assets.

High Vulnerabilities that lead to major abnormalities

in the operation of the contract due to contract

operation errors. It is strongly recommended to

fix.

Unstandardized docking of the

USDT interface, causing the

user's assets to be unable to

withdraw.

Medium Vulnerabilities that cause the contract operation

result to be inconsistent with the design but will

not harm the core business. It is recommended to

fix.

The rewards that users received

do not match expectations.

Low Vulnerabilities that have no impact on the

operation of the contract, but there are potential

security risks, which may affect other functions.

The project party needs to confirm and

determine whether the fix is needed according to

the business scenario as appropriate.

Inaccurate annual interest rate

data queries.

Info There is no impact on the normal operation of

the contract, but improvements are still

recommended to comply with widely accepted

common project specifications.

It is needed to trigger

corresponding events after

modifying the core configuration.

Appendix 2 Audit Categories and Details

No. Categories Subitems

1 Coding Conventions

Compiler Version Security

Deprecated Items

Redundant Code

require/assert Usage

Gas Consumption

2 General Vulnerability

Integer Overflow/Underflow

Reentrancy

Pseudo-random Number Generator
(PRNG)

Transaction-Ordering Dependence

DoS (Denial of Service)

Function Call Permissions

call/delegatecall Security

Returned Value Security

tx.origin Usage

Replay Attack

Overriding Variables

3 Business Security
Business Logics

Business Implementations

1. Coding Conventions
1.1. Compiler Version Security

The old version of the compiler may cause various known security issues. Developers are advised to

specify the contract code to use the latest compiler version and eliminate the compiler alerts.

1.2. Deprecated Items

The Solidity smart contract development language is in rapid iteration. Some keywords have been

deprecated by newer versions of the compiler, such as throw, years, etc. To eliminate the potential pitfalls they

may cause, contract developers should not use the keywords that have been deprecated by the current

compiler version.

1.3. Redundant Code

Redundant code in smart contracts can reduce code readability and may require more gas consumption

for contract deployment. It is recommended to eliminate redundant code.

1.4. SafeMath Features

Check whether the functions within the SafeMath library are correctly used in the contract to perform

mathematical operations, or perform other overflow prevention checks.

1.5. require/assert Usage

Solidity uses state recovery exceptions to handle errors. This mechanism will undo all changes made to

the state in the current call (and all its subcalls) and flag the errors to the caller. The functions assert and

require can be used to check conditions and throw exceptions when the conditions are not met. The assert

function can only be used to test for internal errors and check non-variables. The require function is used to

confirm the validity of conditions, such as whether the input variables or contract state variables meet the

conditions, or to verify the return value of external contract calls.

1.6. Gas Consumption

The smart contract virtual machine needs gas to execute the contract code. When the gas is insufficient,

the code execution will throw an out of gas exception and cancel all state changes. Contract developers are

required to control the gas consumption of the code to avoid function execution failures due to insufficient gas.

1.7. Visibility Specifiers

Check whether the visibility conforms to design requirement.

1.8. Fallback Usage

Check whether the Fallback function has been used correctly in the current contract.

2. General Vulnerability
2.1. Integer overflow

Integer overflow is a security problem in many languages, and they are especially dangerous in smart

contracts. Solidity can handle up to 256-bit numbers (2**256-1). If the maximum number is increased by 1, it

will overflow to 0. Similarly, when the number is a uint type, 0 minus 1 will underflow to get the maximum

number value. Overflow conditions can lead to incorrect results, especially if its possible results are not

expected, which may affect the reliability and safety of the program. For the compiler version after Solidity

0.8.0, smart contracts will perform overflow checking on mathematical operations by default. In the previous

compiler versions, developers need to add their own overflow checking code, and SafeMath library is

recommended to use.

2.2. Reentrancy

The reentrancy vulnerability is the most typical Ethereum smart contract vulnerability, which has caused

the DAO to be attacked. The risk of reentry attack exists when there is an error in the logical order of calling

the call.value() function to send assets.

2.3 Pseudo-random Number Generator (PRNG)

Random numbers may be used in smart contracts. In solidity, it is common to use block information as a

random factor to generate, but such use is insecure. Block information can be controlled by miners or obtained

by attackers during transactions, and such random numbers are to some extent predictable or collidable.

2.4. Transaction-Ordering Dependence

In the process of transaction packing and execution, when faced with transactions of the same difficulty,

miners tend to choose the one with higher gas cost to be packed first, so users can specify a higher gas cost to

have their transactions packed and executed first.

2.5. DoS(Denial of Service)

DoS, or Denial of Service, can prevent the target from providing normal services. Due to the

immutability of smart contracts, this type of attack can make it impossible to ever restore the contract to its

normal working state. There are various reasons for the denial of service of a smart contract, including

malicious revert when acting as the recipient of a transaction, gas exhaustion caused by code design flaws, etc.

2.6. Function Call Permissions

If smart contracts have high-privilege functions, such as coin minting, self-destruction, change owner,

etc., permission restrictions on function calls are required to avoid security problems caused by permission

leakage.

2.7. call/delegatecall Security

Solidity provides the call/delegatecall function for function calls, which can cause call injection

vulnerability if not used properly. For example, the parameters of the call, if controllable, can control this

contract to perform unauthorized operations or call dangerous functions of other contracts.

2.8. Returned Value Security

In Solidity, there are transfer(), send(), call.value() and other methods. The transaction will be rolled back

if the transfer fails, while send and call.value will return false if the transfer fails. If the return is not correctly

judged, the unanticipated logic may be executed. In addition, in the implementation of the

transfer/transferFrom function of the token contract, it is also necessary to avoid the transfer failure and return

false, so as not to create fake recharge loopholes.

2.9. tx.origin Usage

The tx.origin represents the address of the initial creator of the transaction. If tx.origin is used for

permission judgment, errors may occur; in addition, if the contract needs to determine whether the caller is the

contract address, then tx.origin should be used instead of extcodesize.

2.10. Replay Attack

A replay attack means that if two contracts use the same code implementation, and the identity

authentication is in the transmission of parameters, the transaction information can be replayed to the other

contract to execute the transaction when the user executes a transaction to one contract.

2.11. Overriding Variables

There are complex variable types in Solidity, such as structures, dynamic arrays, etc. When using a lower

version of the compiler, improperly assigning values to it may result in overwriting the values of existing state

variables, causing logical exceptions during contract execution.

Appendix 3 Disclaimer

This report is made in response to the project code. No description, expression or wording in this report

shall be construed as an endorsement, affirmation or confirmation of the project. This audit is only applied to

the type of auditing specified in this report and the scope of given in the results table. Other unknown security

vulnerabilities are beyond auditing responsibility. Beosin (Chengdu LianAn) Technology only issues this

report based on the attacks or vulnerabilities that already existed or occurred before the issuance of this report.

For the emergence of new attacks or vulnerabilities that exist or occur in the future, Beosin (Chengdu LianAn)

Technology lacks the capability to judge its possible impact on the security status of smart contracts, thus

taking no responsibility for them. The security audit analysis and other contents of this report are based solely

on the documents and materials that the contract provider has provided to Beosin (Chengdu LianAn)

Technology before the issuance of this report, and the contract provider warrants that there are no missing,

tampered, deleted; if the documents and materials provided by the contract provider are missing, tampered,

deleted, concealed or reflected in a situation that is inconsistent with the actual situation, or if the documents

and materials provided are changed after the issuance of this report, Beosin (Chengdu LianAn) Technology

assumes no responsibility for the resulting loss or adverse effects. The audit report issued by Beosin (Chengdu

LianAn) Technology is based on the documents and materials provided by the contract provider, and relies on

the technology currently possessed by Beosin (Chengdu LianAn). Due to the technical limitations of any

organization, this report conducted by Beosin (Chengdu LianAn) still has the possibility that the entire risk

cannot be completely detected. Beosin (Chengdu LianAn) disclaims any liability for the resulting losses.

The final interpretation of this statement belongs to Beosin (Chengdu LianAn).

Official Website

https://lianantech.com

E-mail

market@lianantech.com

Twitter

https://twitter.com/Beosin_com

	Audit Results Explained
	Other audit items explained
	Appendix 1 Description of Vulnerability Level
	Appendix 2 Audit Categories and Details
	Appendix 3 Disclaimer

